Indian Statistical Institute M.Math Second year Back up exam - Partial differential Equations

Total Marks : 40

[2]

 $\left[5\right]$

- 1. (a) Define the normed linear space $W_0^{k,p}(\Omega)$ for $1 \le p \le \infty$ and $k \in \mathbb{N}$. [2]
 - (b) Is it true that $C^{\infty}(\mathbb{R})$ is dense in $H^1(\mathbb{R} \setminus \{0\})$. [2]
- 2. (a) State Trace theorem for $H^1(\Omega)$.
 - (b) Let Ω be a bounded open set in \mathbb{R}^N with C^1 boundary Γ . Let $u, v \in H^1(\Omega)$. Then for $1 \leq i \leq n$, show that

$$\int_{\Omega} u \frac{\partial v}{\partial x_i} = -\int_{\Omega} \frac{\partial u}{\partial x_i} v + \int_{\Gamma} (\gamma_0 v) (\gamma_0 u) \nu_i dS$$

where $\gamma_0 u$ and $\gamma_0 v$ denotes the trace of u and v respectively. [4]

- 3. Derive d'Alembert's formula for the wave equation in one space dimension. Deduce the smoothness of the solution in terms of the given data. [5]
- 4. Let $\Omega = (a, b)$ and $a = x_0 < x_1 < \cdots < x_n = b$ be a partition of Ω . Let $I_k = (x_{k-1}, x_k)$ for $k = 1, 2 \cdots n$. Let $f : \Omega \to \mathbb{R}$ be such that $f|_{I_k} \in H^1(I_k)$ for each $0 \le k \le n-1$. Show that $f \in H^1(\Omega)$ if and only if $f \in C(\overline{\Omega})$. [5]
- 5. Let $1 and <math>u \in L^p(\Omega)$, where Ω is an open subset of \mathbb{R}^N . Show that $u \in W^{1,p}(\Omega)$ if there exists a constance C such that $|\int_{\Omega} u \frac{\partial \varphi}{\partial x_i}| \le C \|\varphi\|_{L^{p'}(\Omega)}$ for every $\varphi \in C_c^{\infty}(\Omega)$ and $1 \le i \le n, p'$ is the conjugate exponent of p. [5]
- 6. State and prove Lax-Milgram lemma.
- 7. Fix an $\alpha > 0$ and $\Omega = B_1(0)$. Show that there exists a constant C depending only on n and α such that

$$\int_{\Omega} u^2 dx \le C \int_{\Omega} |Du|^2 dx$$

provided $|\{x \in \Omega : u(x) = 0\}| > \alpha.$ [5]

8. Define hypoelliptic operator. Prove that $Lu = -\Delta u + u$ is a hypoelliptic operator in \mathbb{R}^N . [5]